Friday, 13 October 2017

Was Ist Exponentiell Gewichtet Gleitender Durchschnitt


Der exponentiell gewichtete Moving Average (EWMA) ist eine Statistik zur Überwachung des Prozesses, der die Daten in einer Weise mittelt, die den Daten weniger und weniger Gewicht verleiht, da sie zeitlich weiter entfernt werden. Vergleich der Shewhart-Kontrollkarte und der EWMA-Kontrolltafeltechniken Für die Shewhart-Chartsteuerungstechnik hängt die Entscheidung über den Stand der Kontrolle des Prozesses zu jeder Zeit (t) allein von der aktuellsten Messung aus dem Prozess ab und natürlich, Der Grad der Richtigkeit der Schätzungen der Kontrollgrenzen aus historischen Daten. Für die EWMA-Steuerungstechnik hängt die Entscheidung von der EWMA-Statistik ab, die ein exponentiell gewichteter Durchschnitt aller bisherigen Daten einschließlich der letzten Messung ist. Durch die Wahl des Gewichtungsfaktors (Lambda) kann das EWMA-Steuerungsverfahren auf eine kleine oder allmähliche Drift im Prozess empfindlich gemacht werden, während das Shewhart-Steuerungsverfahren nur dann reagieren kann, wenn der letzte Datenpunkt außerhalb einer Kontrollgrenze liegt. Definition von EWMA Die Statistik, die berechnet wird, ist: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1,, 2, ldots ,, n. Wo (mbox 0) ist der Mittelwert der historischen Daten (Ziel) (Yt) ist die Beobachtung zum Zeitpunkt (t) (n) ist die Anzahl der zu überwachenden Beobachtungen einschließlich (mbox 0) (0 Interpretation der EWMA-Kontrollkarte Die rot Punkte sind die Rohdaten, die die gezackte Linie ist die EWMA-Statistik im Laufe der Zeit. Die Grafik sagt uns, dass der Prozess in der Steuerung ist, weil alle (mbox t) zwischen den Kontrollgrenzen liegen, aber es scheint ein Trend nach oben für die letzten 5 zu sein Period. Exponential Moving Average - EMA BREAKING DOWN Exponential Moving Average - EMA Die 12- und 26-Tage-EMAs sind die beliebtesten Kurzzeitdurchschnitte und sie werden verwendet, um Indikatoren wie die gleitende durchschnittliche Konvergenzdivergenz (MACD) und den Prozentsatz zu schaffen Preis-Oszillator (PPO) Im Allgemeinen werden die 50- und 200-Tage-EMAs als Signale von langfristigen Trends verwendet. Händler, die technische Analysen einsetzen, finden in der Lage, sehr sinnvoll und aufschlussreich zu sein, wenn sie ordnungsgemäß angewendet werden, aber bei der Verwendung nicht ordnungsgemäß Verwüstung schaffen Fehlinterpretiert. Alle gleitenden Mittelwerte, die üblicherweise in der technischen Analyse verwendet werden, sind ihrer Natur nach rückläufige Indikatoren. Folglich sollten die Schlussfolgerungen, die aus der Anwendung eines gleitenden Durchschnitts auf eine bestimmte Marktkarte gezogen werden, darin bestehen, eine Marktbewegung zu bestätigen oder ihre Stärke anzugeben. Sehr oft, bis zu der Zeit, in der eine gleitende durchschnittliche Indikatorlinie eine Änderung vorgenommen hat, um einen bedeutenden Marktzugang zu reflektieren, ist der optimale Markteintritt bereits vergangen. Eine EMA dient dazu, dieses Dilemma zu einem gewissen Grad zu lindern. Weil die EMA-Berechnung mehr Gewicht auf die neuesten Daten setzt, umarmt sie die Preisaktion etwas fester und reagiert daher schneller. Dies ist wünschenswert, wenn eine EMA verwendet wird, um ein Handelseingangssignal abzuleiten. Interpretation der EMA Wie alle gleitenden durchschnittlichen Indikatoren sind sie für die Trends in den Märkten besser geeignet. Wenn der Markt in einem starken und anhaltenden Aufwärtstrend ist. Die EMA-Indikatorlinie zeigt auch einen Aufwärtstrend und umgekehrt für einen Down-Trend. Ein wachsamer Trader wird nicht nur auf die Richtung der EMA-Linie achten, sondern auch auf das Verhältnis der Änderungsrate von einem Bar zum nächsten. Zum Beispiel, da die Preiswirkung eines starken Aufwärtstrends beginnt zu glätten und umzukehren, beginnt die EMAs-Änderungsrate von einem Bar zum nächsten zu verkleinern, bis zu diesem Zeitpunkt die Indikatorlinie abflacht und die Änderungsrate Null ist. Wegen der nacheilenden Wirkung, bis zu diesem Punkt, oder sogar ein paar Takte vorher, sollte die Preisaktion bereits umgekehrt sein. Daraus folgt, dass die Beobachtung einer konsequenten Abnahme der Änderungsrate der EMA selbst als Indikator verwendet werden könnte, der dem Dilemma, das durch die nacheilende Wirkung der sich bewegenden Mittelwerte verursacht wurde, weiter entgegenwirken könnte. Gemeinsame Verwendungen der EMA EMAs werden häufig in Verbindung mit anderen Indikatoren verwendet, um signifikante Marktbewegungen zu bestätigen und ihre Gültigkeit zu beurteilen. Für Händler, die intraday und schnell bewegte Märkte handeln, ist die EMA mehr anwendbar. Häufig verwenden Händler EMAs, um eine Handelsvorspannung zu bestimmen. Zum Beispiel, wenn ein EMA auf einer Tageskarte einen starken Aufwärtstrend zeigt, kann eine Intraday-Trader-Strategie nur von der langen Seite auf einem Intraday-Chart handeln. Der EWMA-Ansatz hat ein attraktives Merkmal: Es erfordert relativ wenig gespeicherte Daten. Um unsere Schätzung an jedem Punkt zu aktualisieren, benötigen wir nur eine vorherige Schätzung der Varianzrate und des letzten Beobachtungswertes. Ein sekundäres Ziel der EWMA ist es, Veränderungen in der Volatilität zu verfolgen. Für kleine Werte beeinflussen die jüngsten Beobachtungen die Schätzung umgehend. Bei Werten, die näher an einer liegen, ändert sich die Schätzung langsam auf der Grundlage der jüngsten Änderungen der Renditen der zugrunde liegenden Variablen. Die RiskMetrics-Datenbank (von JP Morgan produziert und öffentlich zugänglich gemacht) nutzt die EWMA mit der Aktualisierung der täglichen Volatilität. WICHTIG: Die EWMA-Formel übernimmt keine langfristige durchschnittliche Abweichung. So ist das Konzept der Volatilität die Reversion nicht von der EWMA erfasst. Die ARCHGARCH Modelle sind dafür besser geeignet. Ein sekundäres Ziel von EWMA ist es, Veränderungen in der Volatilität zu verfolgen, so dass für kleine Werte die jüngste Beobachtung die Schätzung umgehend beeinflussen wird, und für Werte, die näher an einem liegen, ändert sich die Schätzung langsam zu den jüngsten Veränderungen der Renditen der zugrunde liegenden Variablen. Die RiskMetrics-Datenbank (produziert von JP Morgan), die 1994 veröffentlicht wurde, nutzt das EWMA-Modell mit der Aktualisierung der täglichen Volatilitätsschätzung. Das Unternehmen stellte fest, dass über eine Reihe von Marktvariablen, dieser Wert der Prognose der Varianz, die am nächsten zu realisierten Varianz Rate kommt. Die realisierten Abweichungsraten an einem bestimmten Tag wurden in den folgenden 25 Tagen als gleichgewichteter Durchschnitt berechnet. Um den optimalen Wert von Lambda für unseren Datensatz zu berechnen, müssen wir die realisierte Volatilität an jedem Punkt berechnen. Es gibt mehrere Methoden, so wählen Sie eine. Als nächstes berechnen Sie die Summe der quadratischen Fehler (SSE) zwischen EWMA-Schätzung und realisierte Volatilität. Schließlich minimiere die SSE durch Variieren des Lambdawertes. Klingt einfach Es ist. Die größte Herausforderung besteht darin, einen Algorithmus zu vereinbaren, um die verwirklichte Volatilität zu berechnen. Zum Beispiel wählten die Leute bei RiskMetrics den folgenden 25-Tage-Tag, um die realisierte Varianzrate zu berechnen. In Ihrem Fall können Sie einen Algorithmus wählen, der Tägliche Volumen-, HILO - und OPEN-CLOSE-Preise nutzt. Q 1: Können wir EWMA verwenden, um die Volatilität mehr als einen Schritt voraus zu schätzen Die EWMA-Volatilitätsdarstellung nimmt keine langjährige durchschnittliche Volatilität ein, und für jeden prognostizierten Horizont über einen Schritt hinaus gibt die EWMA eine Konstante zurück Wert:

No comments:

Post a Comment